Disparate data fusion for protein phosphorylation prediction
نویسندگان
چکیده
منابع مشابه
Disparate data fusion for protein phosphorylation prediction
New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method ...
متن کاملGeneralized canonical correlation analysis for disparate data fusion
Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and inference from multiple and massive disparate data sources. In this paper we focus on a method called Canonical Correlation Analysis (CCA) and its generalization Generalized Canonical Correlation ...
متن کاملFuzzy Integral Based Data Fusion for Protein Function Prediction
Data fusion using diverse biological data has been applied to predict the protein function in recent years. In this paper, fuzzy integral fusion based on fuzzy measure is used to integrate the probabilistic outputs of different classifiers. Support vector machines as base learners are applied to predict the functions of examples from each data source. Fuzzy density values are determined by Part...
متن کاملCombining disparate data sources for improved poverty prediction and mapping
More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of "Big Data" to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framewo...
متن کاملData construction for phosphorylation site prediction
Protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. As mass spectrometry-based experimental approaches for identifying phosphorylation events are resource-intensive, many computational methods have been proposed, in which phosphorylation site prediction is formulated as a classification problem. They ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Operations Research
سال: 2008
ISSN: 0254-5330,1572-9338
DOI: 10.1007/s10479-008-0347-9